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SIGNIFICANCE AND EXPLANATION

The singular parabolic equations treated here serve as a model of heat

conduction in processes where a change of phase occurs, such as water-ice,

solidification of alloys, melting of metals.

Usually solutions of boundary value problems associated with these

equations are found in a global sense, i.e. they are defined as equivalence

classes in certain Sobolev spaces. It is of interest to decide whether

they may be defined pointwise and if they possess some local regularity

such as continuity.

In this paper we prove that global (weak) solutions are in fact con-

tinuous. Moreover we study under what circumstances the continuity can be

extended up to the boundary of the domain where the process takes place.

r

Lt.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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CONTINUITY OF WEAK SOLUTIONS
TO CERTAIN SINGULAR PARABOLIC EQUATIONS

Emmanuele Di Benedetto

1. Introduction:

In this paper we study the continuity of weak solutions of parabolic

"equations," with principal part in divergence form, of the type

(1.1) 3- 6(u) - div a(x,t,u,V u) + b(x,t,u,V u) 0
3t x - x

in the sense of distributions over a domain Q in RN+I

Here $(') represents a maximal monotone graph in JR x 3R such that 0 E (0),

-2N+2 N 2N+2 1
ais amap from 3Z into 3R and b maps 3R into JR.

Beside their intrinsic interest, inclusions such as (1.1) arise as a model

to a variety of diffusion problems. In particular they comprehend in a unify-

ing scheme, free-boundary problems of different nature. We mention specifically

problems of fast chemical reaction [5, 8, 9], diffusion in porous media

[i, 3, 4, 13, 20, 27], diffusion in porous media of partially saturated gas

[14, 25], problems of diffusion involving change of phase of Stefan type

[1, 6, 13, 16, 18, 20, 28].

Here we deal with the case in which 6(') has a jump at the origin. More

precisely we assume f(') is given by

jB1 (r) r > 0

(1.2) 6(r) = [-v,0] r = 0

S12 
(r) -v r < 0

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
This material is based upon work supported by the National Science Foundation
under Grant No. MCS78-09525 A01.
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where v > 0 is a given constant and 1. (') i = 1, 2, are monotone increasing
1

functions in their respective domain of definition, a.e. differentiable and

(1.3) 0 < 0 < (r) < a l = 1, 2

for two positive constants aOt., ".

We introduce some notation and make precise the meaning of solution of

i (1.1).
iN

Let 2 be a bounded domain in PRN  of boundary 90 and for 0 < T <

let Q, E Q x (0,T], Q(t) - Q x {t}, S = U 20 x {t}, ' = S U N(0).
T 0<t<T T

For q, r > 1 we denote by L q,r(QT ) the Banach space of those measurable

functions mapping T + 'R, with norm defined by

r T r

IIu 1 =fI I1ul (t)dt
q,r, T  0 q,Q

T

where
q

lu 11 (t) = f lu¢,t)Iq  dx
q,Q Q

When q = r = 2, L (Q ) coincides with the Hilbert space L (MT) whose
2,2 T 2 T

inner product (.,-)2, generates the norm 1I I12,-T 1 I2,2, T.

1,0
Let W (MT) denote the Hilbert space with inner product

N
+ 2u 3vu)1,0 1 , 7

Wf2 1N) T T i=l I 1

while W denotes the Hilbert space with inner product
2 T

+ 2u LV-.4(u,v) 11 = (u,v) + (- , _-)"1,0 1,1 , at at
W ) W (Q 2 Q

T 2 T

-2-



Here denote generalized derivatives. With W2  (T we denote the

Her aU au 21 T
i,i

space of those elements in W2  (P ) whose trace on 30 x (0,T] is zero.
2 T

1,0
Let V 2  (Q ) denote the Banach space of functions such that the map

2 T

t - u(.,t) is continuous with respect to 11. 112, , and the norm is given by

2 2 2
lul 1 0 sup llu(.,t) II + IIV u 11

V2  () 0 <t<T 2, 2,
TT

where

2 N1 1 X ( u au
I 2, T  i=l axi a i 2 S'T

From (1.2) it follows that r - 8(r) is a relation in 3R x!R, whose

-i
inverse 8 (.) is a function.

Definition: By a weak solution of (1.1) in QT we mean a function u E W2  (ST
T 2 T

defined by

u 81(w) ,

where w is a function defined in QT such that

w c 8(u)

the inclusion being intended in the sense of the graphs, and w and u satisfy

+ t ta

(1.4) f W(X,T P (x,tr)dx it+ f tf {-w(X,T)-t (X,T) +

t0 t0Q

+ a(x,r,U,V U) • Vx- + b(x,r,u,V u)-P}dxdT = 0x ~ x

for all . I2  (QT), and all intervals [tot] c (0,T].

-3-



If u E V2  (QT) is solution of a boundary value problem associated with

(1.1), then it satisfies (1.4), the boundary conditions being specified separ-

ately. We remark that if in (1.4) we want to allow to = 0, then along with

u(x,o) = u (x), the selection w0(x) c $(uo(x)) must be given. A common
000

dcvice consists in prescribing u0 (x) # 0 a.e. in Q so that (u o(x)) is

unambiguously a.e. defined in Q.

We are not concerned here with the existence of weak solutions of (1.1),

for which we refer to fl, 5, 6, 16, 18, 20]. Our results are local in nature and

descent only from identity (1.4), so that we need not associate (1.1) with

a particular boundary value problem.

Our goal is to prove that a weak solution of (1.1) is continuous in P.T

For this we introduce the auxiliary function

fl(u(x,t)) , on [u > 0]

v(x,t) = B0 (u(x,t)) 0 on [u = 0]

82 (u(x,t)) , on Eu < 0]

and set

w(x,t) = v(x,t) - v(x,t)X[v < 0]

where v(x,t) > 0 is given by

v, (x,t) 6 Iv < 0]
v (x,t) =

-w(x,t) , (x,t) f IV = 0]

and x(?) denotes the characteristic function of the set Z.

By virtue of (1.3), if u (W 1 1 (Q ) then also v W and it will
2 T 2 ~T

bo enough to show the continuity of v in

LI' -4-



Setting

a(xtvV V) = a(x,t,0 (v),V x3(v))
x -. 0 xO0

b(x,t,V,V v) = b(x,t,o l (v) ,V 1 l (v))
x - 0 xO0

identity (1.4) can be rewritten as

it t

(1.5) f (v(x,T) -V(x,T)X[V < 0]) P(x,T)dx + f f {-(v(x,T) -V(x,T)X[v <_ 01)
to  t 0

t + a(XTvVV) " VX + b(XTVV xv) P}dxdT = 0

E W'( (Q) and all intervals [t ,t] c (0,T].

The above can be viewed as the weak formulation of

(1.6) T- 3(v) - div a(x,t,v,Vxv) + b(x,t,v,Vx v) 3 0 in V' (T

where () is the maximal monotone graph

r r > 0

(1.7) 1(r) = [0,-v r = 0

r r- v r < 0

In what follows we will assume B(') is given as in (1.7).

Throughout the paper we will make the following assumptions on the

coefficients a = (a 2t ... a N) and b.

[A a., b c C[ x ]N+l i = 1, 2, ..., N

1 1T

• N

[Aa (x,tvp)p > ( 2 (xt)
-i=l

-5-
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la(xt,v,P)j < i0((v() pj * (x,t), i= 1, 2, N

lb(x,t,v, _* )1 I~ 2 2  (x't  '
+ +

where CO('): . -R is continuous, decreasing, and strictly positive

+ +

P.(): i R + R + are continuous and increasing, i = 0, 1,1

and the i' i = 0, 1, 2 are non-negative and satisfy

11Po r; 2 I11 , IIk l 11 - 2
qr, T

Here j2  is a given constant and q, r are positive numbers linked by
i2

S1 N
-- = 1 -K 1

r 2q

2 N (1 r col 0 <K < l. for N > 2

- 1 K 2 1 for N= 1

1 1 2<c (1,00) , r e 1-< -, 21 ',0<< <  for '

We can now state our main result.

Theorem 1: Let (AI - [A2] hold. Then every essentially bounded weak solution

u of (1.1) is continuous in 0T"

If (1.1) is associated with an initial boundary value problem of Dirichlet

or Neumann type then under suitable assumptions on the boundary conditions the

continuity of u can be extended to the closure of 0T' For the precise state-

ment of those results we refer to Section 5 Theorem 5.1, 5.2 and 5.3.

Romarks: (i) By the local nature of our arguments, in Theorem 1, the function u

neod not be defined in a cylindrical domain, since we can always reduce to this

-6-
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case by selecting in (1.4) test functions supported in cylindrical domains.

Hence for the purpose of proving Theorem 1 one need only to assume that u is,

locally essentially bounded in Q and that u E W1 ,1o
2,loc

(ii) It is of interest to know if Theorem 1 holds under the assumptions

that u is essentially bounded in QT and u E V '0 (0T). A step in this
T2 T

direction can be found in Section 6.

(iii) Assumptions [A11 - [A2] are the same to those imposed in (181 to study

the Holder continuity of weak solutions of (1.1) with 3(r) = r. In this con-

nection in [22, 23] it is observed that the order of summability p, r are

optimal.

If r -* 6(r) is a monotone a.e. differentiable function satisfying (1.3),

then the local H6lder continuity of the solution follows from the results of

(18]. See also (8, 9] for the corresponding free-boundary problems.

We briefly comment on the regularity results at our knowledge available

when 8(-) is monotone and singular or degenerate.

For N = 1 and b = 0, Fasano, Primicerio and Kamin showed in (15] that,

under suitable assumptions on a(x,t,U,VxU), a generalized solution of (1.1) is

locally Lipschitz-continuous in 0 T' Holder estimates where obtained by Cannon,

Henry, Kotlov (10].

In [14] a similar result is obtained for a degenerate 8(.) of the form

1 (r) r < 0

rB(r) =

0 r>0

whero 31( ) satisfies (1.3).

r For N > I, Caffarelli and Friedman (3] proved the continuity of nonnegative

weak solutions of

-7-
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atu -Au= 0 , O<c<l

This result has been improved to the Holder continuity by the same authors

in [4].

Recently Caffarelli and Evans [2] have shown that weak solutions of

T-t a(u) - Au ) 0 in OT

for 3(.) given by

( 1r r > 0

I[-V,0] r = 0

2r r < 0

Bi, i = 1, 2 positive constants, are continuous. Their method of proof relies

strongly on the properties of the Laplacian operator and the absence of lower

order terms.

Our approach is completely different from the one in [2], and it is a

natural continuation of ideas exposed in [12]. The method consists of a

suitable modification of the parabolic version of the De Giorgi's estimates, as

appearing in Ladijzenskaja-Solonnikov-Ural'tzeva [18].

The main idea of the proof can be described somehow euristically as follows.

The function (x,t) - u(x,t) can be modified in a set of measure zero to yield

1,1
a continuous representative out of the equivalence class u c W2  (QT) if for

(very (xot0) 0 2T there exists a family of nested and shrinking cylinders

Qn(x ,t ) around (x ,t ), such that the essential oscillation w of u in
n0 0 00

Q n'x 0 t 0 tends to zero as n - in a way determined by the operator in (1.1)

and the data.

r



The statement that a certain quantity, or function, delends upon the data

will mean that it can be determined in terms of N, C0(), 0(.), (), 0i
^i

10, , 2, Kit, r, ], the jump d of 2(.) and the essential bound of u

over

The paper is organized as follows. Section 2 contains some 1prelirrinary

material and the derivation of a system of integral inequalities which will be

the main tool in thr proof of the theorem. Sections 3 and 4 are devoted to the

proof of Theorem 1. The continuity up to the boundary is discussed in Section 5.

Finally in section 6 we show that if u . ( V of

2 1, (T)

(1.1) which can be obtained as weak V2 )-limit of certain approximations
2 T

of (1.1) (in a sense to be made precise) then in fact the convergence takes

place in the topology of the uniform convergence over compacts of -T"

Since the arguments are technically heavy and the symbolism is quite

complicated, an effort has been made to render the paper as self-contained as

possible.

In view of this we have reproduced certain calculations already known from

the literature.

I would like to thank M. Crandall for several helpful discussions on the

subject.

N
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2. Preliminary material and integral inequalities:

This section is devoted to the derivation of a system of integral inequal-

ities which will be the main tool in the proof of Theorem i.

Let vE L ( ) and k JR. Set

+[
(v - k) + = max{(v - k);0} ; (v - k)- = max{-(v - k);O}+

It is obvious that (v - k)- E L (Q ) and it is known that if
q,r T

1,1 +
v E W (2M T) so does (v - k) (see [19]).

With B(R) we denote a ball of radius R in JR and if x v(x) is

defined in 12, and B(R) c 2 we set

A+ - {x E B(R)lv(x) > k}
k,R

,R £ {X E B(R)Iv(x) < k}

Also let <N denote the measure of the surface of the unit sphere so that

N
meas B(R) = 

KNR N

From now on (x,t) - v(x,t) will denote a weak solution of (1.6), and M

is a positive real number such that

ess sup jvj < M

T

We will think of (x,t) - v(x,t) as an arbitrarily selected and fixed

representative out of the equivalence class v, sn that the map

(x,t) -. v(x,t) - i is well defined V(x,t) T

We will derive a system of inequalities for v by making particular

selections of the test function , in the identity (1.5).

First we observe that iincp v W 'l( T ) (1.5) can be rewritten as2 T'

-10-
LiO-



t t
(2.1) - f v(x,T)x[v < 0]P dx + f f v(x,r)x[v < 0] -p dxdT +

t0  t 0  Q2 at

t a
+ f f {at v¢ + a(x,T,V,V v) • vxp + b(x,T,v,VxV)IpdxdT = 0
to

W2  ( T ), and any interval [t0 ,t) c (0,T].

Next we construct the test functions in (2.1).

Let 01, 02 6 (0,1) and consider the concentric balls B(R) and B(R - R)

and the cylinders Q(R,X) E B(R) x [t0 ,t0 + X] and Q(R - OlR,X - 02 X)

B(R - u R) x ft + a 2,t 0 + A], A > 0.

Define cutoff functions in Q(R,X) as follows

(a) C E C [Q(R,)] such that (x,t) 1B(R) = 0 Vt E [t0 ,t0 + A],

C(x,t 0 ) = 0 Vx E B(R) and (x,t) = 1, (xt) E Q(R - a R,X - a2X) , L C > a ,
0 1 2 alV I < (o 1 R)- ;i I< (o2A) -l

C ((l R R )<-iX

(b) E C 0 (B(R)) such that C(x) = 1, x E B(R - OIR), IVfI < (a R)
0o

For any cylinder Q(R,A) c 0T we make the following selections of test

function in (2.1)

= + (v M!2

where k r R satisfies

+
(2.2) ess sup (v - k)- < 6

Q(R,X)

for some 6 > 0 to be selected, and (x,t) (x,t) is either as in (a) or as

in (b).

For simplicity of notation we set

I



-f v(x,c)X[v<0]t+(v-k)!],- dx + f f V(X,i[)X[V<o] Dt [+(v-k)- ]dxdir
t t -t

0 00

and transform and estimate the remaining parts of (2.1) as follows

ft f + 2 = Cv +2C2
i J f +-v(v k)! t dxdr T f f ' [( k)-] dxdT

-3 2 f D
to0 0Q

+ 12 t -t ]2 3
2 [1(v - k)! T f f [(v - k)-]~ dxd-r

2, t t Q 3
0 0

To estimate the last two terms in (2.1) we take in account the assumptions

-A [A2]1. We have

N f - + 2
If fa.r,,vv V) [7xv- k)-v k)r ]dxdt +

t+2

t0Q

N t

f~ f'~ C (Ill [+v k) k)-]4 dfd + oCX~ )->Od

t+

2f f C (v)v (v - k)-j ~dd ~~(v - k)- >l 0] dxdT

00

t+

21f( k)- j id
to

-12-



S1(x, ,v,V v) [+(-2 d - f f v)(v- k) '+

2 f 0 x -
0

(v - k)- r dxdT - f f (v - k) +  2 dxd-
t o  1.,:

Since ess sup Ivi < m, from the assumptions on C (.) and (.) we s&cc. t;%t

T

Co(1V[) - Co(M), iI) < (M), i = 0, 1. From the Cauchy inequality
2 -1b2

2ab < ca + C b we have

t
2 f f p 0(M)Iv x(v -k) + (v - k) x d Y"]d- <

t t

<F f f IV (v - k)- 2  2 dxd + E- i2(m) f / [(v k)+] 2 lV H2dxd "
t 2x to0

t t~wi

and

t t2 f1 (v -k)+ ,Vx dxdT <. f [( - k)+]21vx 2:,,-xd:

t t0 o

t
+f f 2 (v - k)-> O]dxdT

t o ?

In estimating the integrals in J2 w- recall (2.2), so that combiinja, ti

estimates for J and J ) we obtain

1

-13
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t + 2 2

t

J- ( > 0 ) + 1 - f [ - k - k + ' (v -
t 0

t 22 t

-f + ; 2 2 + Xt(v -k)- iJdXdT
- 0 2 2 1

t O

0

Next we estimate the last inteqral above in terms of the measure of tb,,- set

[(v - k) + : 01, by employing the assumption [A 2]. We set

++
A,aRC) R {x , CR)!C(v - k)-(x,T) 1 0)

Then by the Holder inequality

t* 2 2 [ +
j =f f [;0 + + 2]C221 (v - k)- 0]dxdT

t. 0 2 1

^~ r-l

7q-i rmax[l,6] O+ 2+ €2 {t [ica rRT)

Setting

2
(2.3) q = r = ,__

q-1 r-l

*I l f [masA,R()] d
max[l,6] 11 ; + .2 r 2ncas A- C q) di',' q'rIQT  t o~

I N
Since. + 1 - we have

r 2qc

-14-
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SN

(:.4) 1 N N

r 2q 4

and the admissible range of r and q is

2 2N

(2.5) q (2,.,) , r (2,-) for N = 2

q (2,-) r [4,,-) , for N = 1

In the estimate of J1 + J2 we choose

Co (M) Co (M)
(2.6) C = 6 = min { ( 114 4-o (M)

1

so that collecting all the previous estimates we obtain the inequalities

- 2 t +12 C2

2 to+
11(v - k) 11 (t) + f f IV (v - k) 2  dxdT

2,22 0 t xt 0

(v - k) 4  11 2 t ) + y f 0 f [(v - k) 1] 2 (,V 412 + 4 y 4)dxdT +

2, 0 t 0xt

to+\ r - (I+K)j+ q -- t  k ~
+ [meas A- R(T)] dT + -(k,t0,) , vt t [,t0],Sk0

where y is a constant depending only upon the data.

These inequalities are valid for every cylinder Q(R,N) c 0T and every
T

k 3R J, satisfying (2.2) with the choice (2.6) of the parameter 6.

j
ij.



It we ielect the cutoff function (x,t) c(x,t) as in (a) we see that

there exists a constant y, dependent only upon the data, such that

+ 2
(2.7) v -

V 2 [B(R 1 01R) x (tO + ' to +

_[(o R) -2 + ( 2 -1 I (v - k)- 112+
2 2,Q(R,)'

+2

to ' + r (+K)

0 ,R - I~- r4 [meas Ak ( q)]q d7+

+ suP a (k,tt)

t[toto +X]

+ +

where a(k,t ot) coincides with t-(k,t0 ,t, ) if ,-(x,t) is selected as
a0

in (a).

Choosing now x - c(x) as in (b) we have

2 2
(2.8) 1I(v -k) +  I + + flV (v -k)t II 1

2 ,A-k, R(t) 2,Q(R-RlRW)1

2 211(v - k)-  + + (O R)-211(v- +

2,A , (t ) 2,Q(R,\)

t k,R 0to+ r -(lK

!+y / [esA,() dT + (ik,t0,t), t [t0,t0+\]rI t0  + ]q +W

with the obvious definition of +(k,t ,t).4 b 0
Roughly speaking, inequalities (2.7) - (2.8) supply some local control on

that part of tho graph of v which lies above (below) the hyperplane v = k.



Consider a region 0 c T such thatT

meas[(x,t) E 01v(x,t) < 0] = 0

Then for every cylinder Q(p,X) c 0, 0-(k,t0,t) 1 0, hence by choosi.ng

the cutoff function C(x,t) as in (a) and as in (b), we see that tne functio;.

+

(x,t) - (v - k)-(x,t) satisfy inequalities (7.1) - (7.2) of [18] page 110.

By virtue of the embedding theorem 7.1 of [18] page 120, this implies that

(x,t) - v(x,t) is Holder continuous in every region Or c 0. An analogous

argument holds for regions 0 such that meas[(x,t) E 01v(x,t) > 0] = 0.

Because of the presence of the term D+(k,t0,t), we do not expect that

inequalities (2.7) - (2.8) imply the continuity of the solution, without

additional informations contained in the identity (2.1). This is the role of

the next two lemmas.

+ 2Let 6 E R and consider the cylinders Q(R,eR ) -B(R)x [t 0,t + a30

Q(R - 1R,8R 2 ) E B(R - OlR) x [t 0,t 0 + OR2 ].

2Lemma 2.1. Let C(x) be a cutoff function in Q(R,OR ) chosen as in (b). T,-,-

there exists a constant C(M,O,v) such that

v2 2 C(, ) N
IVxv 2(x)dxdt I KR

Q(R,6R ) 12

___ Av 2
Proof: In (2.1) select the test function e = e V (x), where 0 will b.

chosen later. For all t c [t0 ,t0 + OR 2 ] we have

- f v(x, )X[v < 0lp dx to- f f (x,i)X[v < 0] v e -(x)axd:
it t P

i -v-2 [t t 3 -v
-Avn 22

V f (x,T)X[v < 0]Oe (x)dx + , f f I V - 1)

SI t0  to t

-17-



t

This terw, ani the term 'f f - v dxd- , can be easily dominated in
tt

N o-terms; of C. R where C depends upon M, and

On the ctier !and using the assumptions [A] - [A 2 , standard calculations

t

f f{(x,r v,'v) 7 + b (x, -rv,-,,v),ijdxd i

tt

(,M) - (M)] f f eC'VVV 2  2(x)dxdr -
t -0 x

t t
4 .0 + Q2) 2 (xdxdT - 2 0 \ f f €i jv [ jdxdi -

t
4 2( M ' c f' '  f [v¢ j dxdT

t 0

4

Selectinj (111) and 4 = rn (N) we conclude that there exists a

constant C depending upon M such that

22R) - NM ff 2 IV v 1 2 r (x)dxdvr < CK

t 02+,R2 
t 0 -

2 +

+ C f ~ 2 +h (X)(]XdT + ft42 dxd-f

W, recall that < ( R) -  and treat the integral involvinq the

0, 1, a.; pr- vioul,, to obtain

,2 2 CiM, ,) N-, i Vl , (x) dxd r P (M ,
, ' -- 2 N

-18-
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This inequality will be employed to prove the following lemma.

+ +

Lemma 2.2: Let k c]Rii > ess sup (v - k) and 0 < n < w

Q(R,OR
2

Set

y(X,t) = n+ L vk ] = max Zn ( +r ] 0I (v- k + + nl I (v- k) +  n]

then there exists a constant C = C(O) such that for all t E [t0 ,t0 + OR
2]

f *2(x,t)dx < 2 i 2 (x,t0 )dx +

B(R-O R) B(R)

1T NK
C R N

Remark: For simplicity of notation we will use the same symbol 0 for
a

(x,t) and (v(x,t)). In what follows p' will mean vp "

(2)' 2
Proof: In (2.1) we select = ) (x), where r(x) is chosen as in

01,1 2 "'2

(b). It is apparent that p 6 W2  (QT), and that (2) =2(1+ ) 2

2'

Since (2 ) vanishes at those points (x,t) c QT where (v - k) + < ri, and

> 0, the terms involving v(x,t)X[v < 0] in (2.1) does not give any
ta

contribution. The term involving y- v gives

t 2' 2 2 2 t

f I A- v(i2 ) (x)dxdT f l
2 (x,T) (x)dx tto Q

tI 0 0

We estimate the remaining terms as follows

-19-
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3X, 1 IV ')2 (1 + 2 7 v 2 Wx + 2~}) V72 (X) dxdr>
to-~x x

t

to x

2 2
-2.f f Q0 (x,T (I + W. (~' xdxdT-

t 0

- m -

t

0

1, (X V4 (X) dxdr>

(2C 0 (M) f C 1+ ~vy 2 W (dxdT-
t

0

f0(X,i I + j2 Wx + 1 (X, T V 2 ( 2) ) dxd--

to

F'()r Lth cIow-r orclcr terms we have

r vtv 2) ' 2 tdd 2 2

t0 C'

U t

-20-



since WI 1 121 V k, 2 1 V VI we have

t
2 , 1 (M) f1 1 xv 2 2 2 (x) dxd-t

< E f (1+ )iV pi 2 C 2 (x)dxdT +

t 0 2

t
+ E- 1 4 i2(M) f f jIvji 2 ; 2 (x)dxdT

1 t 0 Q

Collecting the previous estimates gives

f p2 C 2 (x)dx + [2C 0(M) -2E] ft f (1 + 1I 412 r (x)dxdT<
St 0  t Q2

t 0

< 2ft f 2(' (1 + + [ P + 1 + } 2 (x)dxdT +

t t 21

0

ri 1

the last term in the inequality above. This yields the existence of a cornc7tant

C(M,v,O) such that

-21-



I2

( t 0+ C'R
fy:(x) dx + - n ~ + +2

2 2 f 0t20+ OR2,

-- t1 2 to  B (R)

+ NR <

2 q(1+i- 2 2(!+- ) "--(1+ ) -i

• 'K- 1+ +;. 2 ~ q
+ +

N+& NN 'R + K NR

Th-s )roves ti}," lemma.

Remarks: (i) If -< - 0 and > ess sup (v - k) , then an analogous lemma

holds fcir R

+
(x,t) 1n 0 < 11 <

, - (v - k) + "

The proof is the same except for minor changes.

(ii) The r:roof shows that C(9) increases with 0. We will use lemma 2.2

with 0 1 aind C() replaced by C = C(1).

Wc cc, ort a lemma due to De Giorgi [11] which will be used as we proceed.

LPmma 2.3 (De C¢iorgi): Let v W Wl(B(R)) and let k,; be real numbers such

that k. Then

~N+I

(2.9) - k)ineas A D (R) r v
,R Tneas (B (R)',A ), Ad\

kK A R\

whre D is a con,.tant depending only upon the dimension N.

r4



Inequality (2.9) holds for domains other than balls. We refer to [18,19]

for details noticing for later use that it is valid for convex domains.

Finally if Q is a cylindrical domain in RN+ , V2  (Q) denotes
V2  () deotesthe

subspace of V O(Q) of functions whose trace is zero on the lateral boundary
1

of Q, equipped with the same norm as V 20).
2

The proof of the following embedding lemma can be found in [18] page 74-77.

Lemma 2.4: If v e V 2'(Q) then v E L (Q) where q,r satisfy (2.4) -2 q,r

(2.5). Moreover there exists a constant B depending only upon the dimension

N such that

(2.10) f1v 11 _ Iv10o ,o
q,r,Q V 2  (Q)

If q = r = 2 then

1

(2.11) iv ii < B[meas[iv( o 0] , Q]v
2

2,Q V2,0(Q)

1,0
If v e V (Q) then (2.10) is still valid. Moreover if p = r = 2 and

2

if Q £ 2 x (0,T)

1
(2.12) 11v C < C[meas[IvI 0] n Q]N+2 lvi 1,0

2,Q V2  (Q)

N 1
2 N+-2A where C =2 + (T meas

,
-23-



3. The main proposition:

Throughout this section we let (x0t) 2T to > 0 and for R > 0, R

will denote the cylinder

2i

QR{- JI- x0j < R} x [to - P2 ,t0j

Let R - be so small that Q c2 T set
0 2 2R 0 T

+

+ = ess sup v ; ess inf v

Q2R 0  Q2R 0

and denote with any positive real number such that

+ -

2M > w > ess osc v - -

Q2R
0

For k IR and 0 < R < 2R0 we set

(x,t) QRIV(X,t)> k

R Rlv(x't) <k
Q (k) x{(x,t) < >--R

Finally we let s denote the smallest -,-oF itve integer such that

(3.1)2M

whe.re 6 is the number introduced in (2.&3

The qoal of this section is to irovo the followino result

V Proposition 3.1: L.pt be any positive number such that

2M > ,ss osc v
22R

-24-



Then there exist numbers sO E T1, A, a > I, h > 1, , < 1 such that

02ess osc v < w (1

QR, 2s A /

where R, = E,(2 R0 )h, provided that

NK

> (2R )
s 0+A/w 

a  --

20

The numbers so , A, a, h, . depend uniquely upon the data and not upon R 0

nor w.

Without loss of generality we may assume that

(3.2)

If the reverse inequality holds the arguments are similar. Also we

will assume that

(3.3) ess oscv= - >-

Q2R 0  
2 s

- 1

+ - w___

and treat later the case + - <

2

Notice that (3.2) - (3.3) imply that

+ +-
(3.4) -2 > + > 0

Observe moreover that wp may assume

(I) H E ess Sup) (v N ~ + ~)
S s+l

2 2R 0

r

-25-
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Indued if C:7 is violated

-S ess m v < - -- +
2 s 1s+1

0+

and aidding ess sup v on the left hand side and vi on the right hand side we

0

obtain

OSS OSC v < (
- S+l

R02

anid Proposition 3.1 becomes trivial.

* Proposition 3.1 will be a consequence of a series of lemmas which we state

and prove independently.

Lemma 3.1: There exists a number c~ depending only upon the data and

independent of ,and R such that if
0

2K 1

- -N+2K 
1  N+2

incas Q (.+ < c K R
R s -O NO0

O 2

then either

Nk:

,-, Ulp (v -U + <) R

00

I, i- n':urri, r v~ t''arn n in tO'h assumptions (A I-[



Proof of lemma 3.1: Consider inequalities (2.7) for the function (x,t) - (v-k)

< k < W- + 2 in the cylinders QR 0 < R < R0 . Notice that in view of (3.1)

ess sup (v- k)- < <6
QR --2 s

so that the use of (2.7) for pj < k < u + L is justified.

2 
s

We estimate (-(kt - R 2,t ) in (2.7) by distinguishing the cases of
a 0 0

k < 0 and k > 0.

2
If k < 0 then 4 (k,t Ra - , t O) = 0.-- a 0

If k > 0 we have

to

0-

ak'o - R2  -)2 -t0-R20 -
a 0 t o )0 - V X,T~XV < 0] (x,T)dx 2

to  tO

- k f \(x,T)X[v < O]2 (XT)dx  2 + f 2 f v(x,)Xfv < 0] (v - k)-
to-R t0-R Q

t
2 f 0 f 1 2

-(xT)dxdT + /-v (x,T)dxdr <

t tO  t

_ 0 - 02

<R2v (v - k) a (,~x- f v(x,T) D (X,T)dxdT

If (x,t) - (x,t) is selected as in (a),-t > 0 so that v t > 0 and

-at R t 2 f f (v - k) dxdT
a 0 0 R2 Q

r

-27-



-V.-

Inequalities (2.7) now read

2

(3.5) (v - k)- V 0 B(RO R) x(t( I o 2)R
2 ,t 0 )

2 ((-1 Rxt0(1 2 

< Y[(OIR- 2 + (o 2 Ra ) - ] (v - k) +

t r r

+ Y 2 (meas A( )]q dT +
t OR 2j,

+ 2v(aR 2) 1 f f (v - k)- dxdT
QR

Inequalities (3.5) hold for all lj < k < ,. + 2s 
, all li' 2- (0,1)

and all cylinders Q R 0 < R < R0 .

Set

R0  R0
R 0 +R
n 2 n+22

R0  3R0

n 2 2n+4

and consider the cylinders QR and

n

Qn { x - 0 < R } {t -R

n O xn0 n 0 0

- b~v iou: I .
{jx -l < }'{t-R tl 0

-28-
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Construct smooth cutoff functions x W~~ x as follows

Ci) (x) 1 ix - x01<Rn1

(i) x) =0 x-X1>L[R+ R+ 1 1
n 01 2 n n~l n

(iii) IVC n(W1 < 2 n4/

For simplicity of notation set

k, +

Our purpose is to apply C3.5) to the pair of cylinders R and Q for the
n

decreasing levels

k =C(k -H) +-H ., ,2n 1 2 2n

which as easily verified satisfy

k

Set

Yn= f f [(v - k) 2 dxdz and
QR

n

t r 2

= [meas An CT)] q d-rn f 2kR
t 0-R n n



As n

1 2
Yn y [(V - (k -- ) dxd

QR
0
2

rI

Zn Z- 1 2 [meas Ak H/ 2

R 12 0
t0o-  4

Therefore the lemma will be proved if we can show that y z = 0.

Claim: The numbers

y nzYn Zn

y = Z L= 2 N+2 ' n =

0 R0

satisfy the recursion inequalities

[&2 25n 1+2
<-N Y N+2 1-

n+l- H n n n

SE2 5n Y +ZI]+K
[II] Zn +n

where

=212 2

Here ,3 is the constant appearing in the embedding lemma 2.4, and

n =max{,),(l + y) (2M +

We remark that C depends only upon the data and the dimension N.

-30-
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Proof of the claim: We use here the method of [18) page 106. Set

t
0

Pn f t -R2  [meas A n+l n+l (T)]dT

0 n+1nln+

and observe that

n - n n+l n H n

By virtue of lemma 2.4 applied over the cylinder n we have

nn -2(3.6) yn~l< --  / [(v -k n l]  n(xldxd- <

2 2

2 n n+l n 1,0-
v2 n

2

Estimate of I (v - kn+l n 10

v2 n

2 2

(v  kn+1 ) n 1,0( < I (
v  kn+l 1,0 +

S2 n V2 n

[(v - k = (1) (2)

+ 2 f [(v k n+l ] n d n +IXn

:i n

For J (2) we haveI n
(2) -1 n+4 -12+ 2

4 {[(v -k ) k -k X(v < k )dXdTn 0-- n n n+l n+l

RN

-n+ 4

-31-



(1)
In order to estimate J we use inequalities (3.5) for the pair of

n

cylinders n and Q R Notice that in this connection
n

-2 -2 2(n+4) 2 1 -2 n+3
I~R n) = R 02 02 Rn R02

so that from (3.5) we deduce

(1) 2y 2(n+4) - +<
3 <-2 fJ [(v -k )dxdi+ -Yz +n - 2 Q n+l-n

R R
n

+ '2 f (v - k dxdT <
R2n+1

0 R
n

t
87 22(n+4) I+K v 2n+ 0t n
8--2 n+4 + (meas A (T)]dT2 n D + -2 _2 k

0  t-R n[+l, n

Since

0t _ -2 (2 n+l) 21 2 meas A- (T)]dT < (kn2 - kn Y = 2 , and
R2 kn+l' Rn1n H

0 0

sin-c H 2M + 5, setting -y = max{v,(l + y) (2M + .)} above yields

8(1+24 ) 0 2 3(n+l)2J < -{- Yn + R2 z+}

n R21 0 n

0
i {i1) an (2)wehe

Combining the estimates for J and J we have

2 28 n+) 3

(3.7) (v - k < - {y + R2 zI
n 10(n 2H n 0 n

2 n

:stimate of Y We carry (3.7) in (3.6) and employ the estimate of P to

obtain

-32-
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24 2 2
Yn+l <8 20 ( n l  nYR0 n

and dividing by RN+2

1+2 2 N

E 2 5 n l N + - yN + - ZI + R ON
Yn~ <  Y + z

-~l- H n n n 2H H

2 NK RNK
Now if H < R 0 2 < 1 and [I] is proved.

To prove [II] observe that

t 22
zn+l(kn - k n+ = (k - k n+ Il )

2  [meas l (r) q d

n 0 -R (+ n ' n1

2
< 1(v -ks 1 < by the embedding lemma 2.4 <

q,r,Q 
n

2 - 2

< 2 [(v - k n n 1,0(
V2  Qn )

The last term is estimated in (3.7) so that [III follow at once.

Proof of lemma 3.1 concluded:

By lemma 5.7 of [18] page 96, there exists a number 0 such that if

1+

Y1 << Z,

then the recursion inequalities [I] - [III imply: that Y , 11 as n

rFrom [18] setting

A -33-



d -mint 2
N+2' +,

the number is given by

N+s2 _5(Ns-) 1+-K -

2 2d d
mil H 2 2

2 ?2CI

Now since 1 (0,I) and < 1, above gives

,--_ 5 (N+2) -5 i+-
d " I min 2- 2d 2 d r.

i 2

Where () has been used. Set:

___'-5KN 2)C ramin 2 2d
S0 2s+2 -

and notice that r- depends only upon the data and not upon R0 nor w.

The lemma follow-, if Y, < c 1 Ni.e. ifn 0

YL=2N+2 2 N+2 " 2; ?'1

____ 1 +N

1 N+2

N+2 meas Q --- ) - . .a =• s N+2 0

:'r'pi vi..:I c, f' r -imtlicit'v of notation we !set

r 2. -+C

1

JI



and remark that b depends only upon the data and not upon w nor

R0 *

Remark: By selecting in inequalities (2.7) the constant y large enough,

we see that in (I] - [III the constant C can be made as large as we please

so that without loss of generality we might assume that

b 1c 0 W <

Suppose now that the assumption of lemma 3.1 fails; then since

+ - -- > I - !- +

2 a 2 N+s+

measQ+ (I --- <K R N+2 - 0 KN N+2
R 0(2+  - N 0  N 0

N+2= (i - 60)< N R0
0 NO0

Lemma 3.2: Suppose that k <P +  and that

+ N+2

meas Q (k) < (l - )K R

then for every a E (0,), there exists

T f 0  2 - ctR201T E (to - R02, t0  a

such that

I'I
+ i- 0 N

meas A (T) < R
k,R 0 -0 1 - c N

0 -35-



Proof of lemma 3.2: If not, for all T C [t - R20 ,t- aR2

00 0 0

measA + T)R
N  and

k,R0 1- N 0

t -cAR
QR0 0 0 +

meas (k) > 2 meas ,R T)d >

0 -t 0-kR0t0R0

N+2> (i - 60)'<N R
0N0

We will choose

b
eo cow

2

+ ~
and use the previous lemma for the levels k= + - - , Vp > s.

b
00 c0W

Lemma 3.3: Let a - = - and consider the cylinder
2 2

{Ix - x01 < R , [t -R2
R0  0 0 0 * 00

There exists p0 --N dependent upon .o (and hence .) such that if

p - .

2 p0 - 0

2t
+na (t) < [1i - -1. R

"or all t [t (- 2to]

r

-36-
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Proof of lemma 3.3: Consider lemma 2.2 applied to the function

(xt) v (+ w )+

2Xt) (v -(x,t) , in the cv] in( er

2 2 2
Qo {IX - xo < R l,

for n = - p > s + 2. Here t - R 2 < T < t - aR2 is the number claimed
2p0 0- -0 0

in lemma 3.2. Notice that

ess sup (v ( ) +
T 2 s 2

QR 
0

therefore for all t - [T,t 0 lemma 2.2 gives

(3.8) f n+  2 (x,t)dx <
B(Ro- aR 0) R- (v- (+ + )) +

2 
2 2 -

< + ++ (x,T)dx +BR(v GI+  w )+ a
0 2 2s 2p

+-- 11 + n N0

2 20

a|

NK

Let p p to be selected, then if R1 2 the last term is
0 PO 2 0

majorized by

4C n 2 P-S KN ,p s +
2 NO n
01

-37-



We estimate the remaining terms in (3.8) as follows.

2 2sj+ 2' (x,' ) dx <

B(R- (v 
- ++

;_ 2s  2s  2p

< [n 2 meas A (T) < by lemma 3.2 <

Is 0
-- p - 2 s R 0  -c --

< [n s2 ( ) N RO
For the left hand side we have

I- co-,
s Ij

f n 2 (xt)dx >B 0R(v - (L'+  + )+
010 2 2 2P

2 2s

> f n +  2(x,t)dx >- ++

B(R0- 1 R0)[V - - p 2 - 2s ) + 2p

2\ 2

9n 2 ) meas A+  
(t)

2p  2p 0- 10

These estimates in (3.8) give the inequality

(3.9) meas ", (t) < 9.n 22N N+ -( . 2 P-S-1 1 N
2p 0 

2

4 - 38 -



4C Zn 2 p - s  N

2 2 PS 2 'N 0

/1=f - s~ +'' N __ ___

p s 2~ 1- KN 
N  4C _ KR

- S 02N o a1 2n 2 (p - s - i) 2 N 0

Now
+ +(t +

meas A (t) < meas A+ +
+ - I Ii RF -- R
2p '0 2 p 0 10+ G+

+ meas [B(R 0)\B(R -o R 0) < meas A + Wt) +
--- , R -R

2p0 1 0

N
+ N o N R0 F

therefore by virtue of (3.9)

+ (t) < 0- s 4C p -s
eas s + t - 1 + 2 (- 12

-7L, R0 aI n 2 (p -s -i

2p0 1

I Ntt+ No 1 N RN0

i This inequality holds for all a, f- (0,1), all p > s + 2 and all

St [T,t 0 ]
0: 2

3 0
Select o = 8 N ' and p0 so large that

2p- s 3024C P0 3 0

" Vn 2 (p0 - s- 1) 2  8 an

0

O s 2( 0 - (1- t)( +

-39-



to obtain

+ (o 2 N02_' 0

2p 
0

( b)2 ]KRN

2KJ N RQ

This proves the lemma.

Remark: It is easily seen that a suitable choice of p0  is

( (c O b) 6'

L c0  1

where (al denotes the largest integer contained in a, and

28N2C

C1  2 2

Notice that C depends only upon the data and not upon w nor Ro.1 0

Remark: Since for q > p0, A + - )---A + (t)( we have that

2q ' 0 2p 0

mesA+ (t) < 1 - (00 2 N R N  Vq > p0 I

22q  0

and for all t , [t - -0,t01.
0 0 0

The subscquent arguments will be carried over the cylinder Q~R "

For k 0 we also denote

I k (x t ) Q ' P, v (x 't) > k 1
40 0

-40-



Lemma 3.4: For every 0 1 > 0, there exists q0  IN, q 0 > P0  such that if

NK

2R0  then

(Q + - w < K R N+2

R 0  2 q0  - 1 02

Proof of lemma 3.4: Lemma 3.3 and the remarks following it imply that

meas{B(Ro)\A++ (t. 0 K RN ' q > p

2q0

2
for all t 0 0t - aR0,t

Apply inequality (2.9) to the function x - v(x,t) in the ball

B(R 0)x{t} for the levels

Z + + >'

S 2q , k = q  qo q >  Op

where q0  has to be chosen. If we do this for all t c [t - AR ,tO ]  we
00 0 0

obtain
N+l

/ R
meas{A+ t)<D 0

o tP\ )\A+
kRR mea[ N 0 (kp(t\A)t

7,-- ,-R

2 q 0

IV Id 4DR0 IVxVLdx

.tAk 0(t)\A+'R ( t )  x 1Nt'O Ak '0(t)\A+'R ( t )

Integrate both the sides of this inequality over [t O -Rot] square

and se [K)*tder's inequality on tho right side, to obtaini

,t -41-



(3.11)/ meas C + DONi

0  L 0 2 0VK,0

2 + + kRi

t 2 [meas A+  (T)\A (T)ldT

0t k0_0 ,R 0 L, R0  R 0

In order to estimate the v 2  )-norm of (v (+ - ))

0 2q

inequalities (2.7) applied to the pair of cylinders QR' 2R " Notice that
0

[ma + (T \ + (Tw

in this connection ess sup (v- ( + - ))+<- ~ adta

2q --22 R

0

(R)-2 -2 2 -1 4 -2
10~o- = 4R0 - (o 2 Ro) = - R0

+ I ' wehv

orover observe that since >_ u- w hv

+ J
u -- > 0,

2 0 2 2

i q 0 nequalities (2.7) aple otepinfclnes QR 2 *Nt c w hat

in ( t -i connctio -s- sup (v + W-- ))+ +I adta

2v - (.,o !)iI(4+ HR I(v- (K +
V2 R 2 q 22q

0

-42-
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+Y f 2 [meas A+Iq Tr <

N+6'2 2 (+)-

(2YqV)}N R 0+ Y KN R0K N R0

where (2.4) has been used. By assumption

NK w)2 22

R

so that there exists a constant C depending only upon the dimension N and
2

the data, such that

I~~v< -- )<C KN R
2q 1,0 2_

2 V2 ' ~R2
0

Carrying this in (3.11) and dividing by ( 2T-,)2 gives

Ot + W 2 42 1 N+2
(3.12) [meas Q(W~ - - )] < 4C KE-]

R 0 2 q+NR

[f ( meas Ak+R(T)\A~ + (T)IdT]

We add inequalities (3.12) with respect to q, from p 0to q 0 1 and

obtain

+ 2 42 1 RN+2
(q 0-p 0 )[meas R'("I q- < 4C 2f!-1 4~ R

0 0 N 0

KI -43-



q 0-1 t00 t O  [meas A+  
(T)\A+  

(T) _d <+ W + (Tld
qp t - aR 1A -O

0 0 0 2 q,0 2q+l R0

[4D]2 1 RN+22

- 2 KN N 0
0

60
Now recall that a = - set

4D2

C3 =2C [4-]2
2 KN

and observe that C depends only upon the data and the dimension N.3

Dividing the inequality above by q0 - P0 ' to prove the lemma we have

cnly to choose q0  so large that

1 C3 2
q - P A3 e1

0

We will select

( 3 .1 3 ) q 0  = p 0  + 1 + 
.3

Remark: The proof of lemma 3.4 is an adaptation of a similar result of [18,

namely lemma 7.2 page 114.

Consider now the pair of cylinders Q" and

R0

2

St - 0  R 0

rI

*1 -44-
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For them we have the following result

Lemma 3.5: There exists a number 01 > 0 depending upon j, N and the

data, such that if

+ 0 o w N R+2

meas (w + q < ) K R

2

then either

NK
(+ t )+ 72  ,o

(i) H = ess Eup (V - < R or

QR2

0

(ii) meas G + H) = 0
(ii 0eq 2 2
2 2

Proof of lemma 3.5: The proof is very similar to the proof of lemma 3.1. We

reproduce the main steps mainly to trace the dependence of q0 on 0 (and

hence on w). Let R n R be defined as before, and consider the cylinders

{Ix - x \ - R,t '
n

n 0 n 0 n to]

Qn {Ix -x 01 < Rn} [t 0- nR2 +n1 1t 0

which satisfy the inclusions

' Qn+ c QncQn c Q
P n n RnJln

We use inequalities (2.7) over Qn and QR ' for the functions
n n' )+

(x,t) (v - k where

*1 -45-



k (k + L -H) -H n n 1, 2,
n 1 2

2q 
o

2

Since k - k1 0 in (2.7) we have

+ 2

a (kn ,t 0 - ',R, t) =0

-2 -2 2 (n+4) 2 1 -2 -1 n3
Note that in this case ( 1R R0 2 and (o 2aR) R aCX 2

We have to show that the numbers

Y =n Yn =  (v - k) 2 dxdT
n H2RN+2 f f n

HR n0 0 R0

n

t r 2

Z n N N f [meas + R
n 0 R0 t0- nn'n

tend to zero as n . Proceeding exactly as in lemma 3.1 we see that Yn

and Z satisfy the recursion inequalities
n

4n 1+ 2 2
- 4 2 N+2 N+2 Z1+KYnl<-E Y Y Z

n+- n n n

2 4n Z+K

Zn+ n n

H! The iemma follows if

]1eas k •

-4



.4 N+2 4 1/1 - -4 - --
K2d Kcd= ( ) min{2 , 2 }

i.e. if

i+< N+2 -

-4-- -4-
S= cb where C= (2 ) min{2 -  2 }

4 4 (2N

Here C and d aze as in lemma 3.1.

From (3.13) and the remarks above it follows that the conclusion of

lemma 3.5 holds true if we choose

CI
3q0 >P0 + I + (a b 2 3

q 0 ~p0  C4 a ) e0 j

b 0
We recall that e o = c Ow -a - , therefore taking in account (3.10) we

might select

qo 4 + 4 + C +2 2 C3 1
sC2 (Co b) mnax1 6,2b+ 3)

Set

22bC3 1
C1  2 max{6,2b3}

4 0

and

a = b max{6 ; 2b + 3}

so that

(3.14) q = s + 4 + A
q0 - a

We remark that s, A, a depend only upon the data and not upon w nor the

size of I-.

-47-



oof t th< RroposI Ion Suppose that

q I s+4+ A a.

2

i.vi u,'y either

- -N+I N+2
1. meas + c. -) R-o NO0

2

1

N+21

2. meas Q (. + - ) R 1 R0R0 2 0 NO

Case 1: By lermna 3.1 either

NC

l.a. ess sup (v - ( + - )) < R , or
2s  -0

0

l.b. meas Q C.+ - - H) =0

R0 2! 2
2

If l.a occurs then

N<

0 2 2
- ess inf v < - '. - - + p by (3.15)

Q0  -- 2 s

2 2s+5 +A/, a

+

"Ading es: sup v on the left hand side and + on the right hand sid, ',e
r

j obt ci-48-



*.S OSC V < (-SS OSC V

0 '2R 2

< a 1
-- S+5+A/ a

If l.b occurs then

- 1 - -
ess inf v < - - + - + -- + )

-R 2 s 2 2s

2

2
s +1

i.e.

ess osc v < *(a
QR0  -- 2s+5+A/wa

2

Case 2: By lemmas 3.2 - 3.4, in view of (3.15), the assumptions of lemma 3.5

are verified. It gives the following alternative. Either

+ 2
2.a. ess sup v < - + R

q 0-

0

- q0+l

Or

2 2

r0

t~ -4 -

*1it 1



Hence in either ca:c

1
-SS osc v S4 ... (i -

. 2s4j5-A/' a

2

0
2

Now to determine P. notice that by virtue of (3.15)

J R0 )2 1 cWb (2P)
2 >(2 2.42 0

o  C

Ncb
sb-5 2+

2 c0 (2R0)

1
_ b-5 ,2

Setting ,= (2--' c 2 , and

N Kbh = 1 + - - ,

we have

RR
,c--0, * ,R to2

so that, < t

x* x

7' follows that

(3.16) osc v < :( 1  1
-s +A/-a

sC

wh.re s s * . inally if (3.3) is false then (3.16) follows at once.

The i is prov,:d.

r



4. Proof of Theorem 1:

We will prove the theorem by exploiting the results of the previous

section. Proposition 3.1 is valid for any number w satisfying

ess osc v < j < 2M

Q2 R0

We stress the fact that the constants ,, a, b, A, h in proposition 3.1

do not depend upon R0 nor ,. Let (x 0,t 0 ) T be fixed and select
1

2M ' osc v. Let 0 < R0 < 1 be so small that
0 2

2R "T

NK

(4.1) (2 R 2 2M
- s0 +A/ (2M)a
2

Define two sequences of positive real numbers {R n } and {.! as follows

- 2. ; ? n n = 2, 3,

2a

where min- * 4 , ana

2" (1'" = 2'.: , = :: (1 )
1 n-1 n an +A

2

2 cma 4.1:2 "" " ,:,r .. for all n I

2: .7.

I[



Proof of Lc:mna 4.1: If " ... > > 0, then for all n ,n 'n+l 0

n+l -- a

!'- r i 'L

!"In < M O n 1, 2,...

which im-lies that Mn \ 0 as n - . A contradiction. The statement about
- n

is trivial.

In view of 4.1, Proposition 3.1 implies that

ess osc v < M.2
QR2

M.oreover

R2 =, 4 -a s0 +A/ .)

;,Dr simplicity of notation set

a~)= 2 , x>0

i !cn K, UA::flQ }Lo de i iin o

2- 4-a _____2 _ 4 -a 22

2 \ ) ( l( - o( 1 -1 )  ,, (- 1

-- (N2 d~I) 2 r4
- 2 -( 2 12

r ' , 1 1i > t ip ,I ,fi r t i t io r ' ' , c ,f b , ; i t i ~- i m n ,d i a t ' t o o c ' -t h a t 2 ( ,- - 4 1

; -a 2 -

s('4

x1

ni'c I c fi1 1



Now for all n j IM it is easy to check that

G n4-l a
C)(M n 4

Hence

NK

R 2< 2

2 s +A/Ma

20 2

We have shown that the two inequalities

osc v < N

NK M

s s+A/14

20 1

imply the same two inequalities for R 2 and M .* The same argument shows

that if

ess osc v < M

NK M
2 T< n
n s A/ a

2 0 n

then the same inequalities are valid for n + 1. The lemma is proved.

As a consequence of lemma 4.1 we have that V(x ,t)
00 T

ess lim v(x,t)

exist ;. Wc define the function (x,t) , V(X,t) I'y stetti"l-

-53-



(x , t) (xo0, t O )

Lemma 4.2: The lunction (x,t) -. v(x,t) is a continuous; rn,.res: ntiv ouL

of the ecuivalercL, cass v. Moreover if K is a compact contained in

+ +-

there t:<i uts ,i nonec,:reasing continuous function ,K) , K( r)

clependini i-oiI t>i,, iata and dist(K ;r') such -hat

1

2
V(x,t) - v(x2,t) 2 - 2

1 1 *2 2 .~(xlx~l+tl -t2

V(X.,t ) , - K , i 1, 21 1

The statement is a direct consequence of lemma 4.1 and establishes the,

interior regjularity claimed by Theorem 1.

i<cmark: The continuity result is a consequence of inequalities (2.7) - (2.8)

0nd lemma 2.2 solely.

1



5. Continuity up to the boundary:

Let u W1 ' 1 (: ) be a weak solution of (1.1) subject to certain boundary
2 ~T

conditions. In this section we investigate under what circumstances the con-

tinuity of u can be extended to the closure of sT ' As remarked in the

introduction, this is equivalent to prove the continuity of (x,t) -+ v(x,t)

on the closure T

Our study is divided in three parts. First we show the continuity of v

at time t = 0. Then we investigate the regularity on the lateral part ST

of the parabolic boundary of 0 T 1 for the cases of variational (Neumann) bound-

ary conditions, and homogeneous Dirichlet boundary data. The method of proof

in all three cases is similar to the one in section 3 and 4, and consists roughly

speaking Ln constructing for every (xot O ) a family of coaxial nested cy-
S(01 0 1T

linders with same "vertex" (xot 0 ) where the essential oscillation of v pro-

gressively decreases according to the rules imposed by the operator in (1.1) and

the boundary data. *iecause of the information contained in the boundary data

the analysis in the present situation is in fact simpler.

We will consider cylinders of two types.

Basis cylinders:

(BC) (x0't 0 T Q R - {jx -XO < R} Y ft 0  R 2,t0

with {ix- xo R1 c and t R < 0.

Lateral cylinders:

I 2
(1,C) (x0,t ) r ST x -0 Ri t - R ,t 0  .

r Thu axis of (IC) lies on ST and both (BC) and (1,C) are not contained

in

'j -55-



A -Co[ tillitN at t = 0

Let v W (--r) satisfy identity (2.1) and in addition

v(x,O) v o(x) = % (uo(x))

i0 th senst, of the traces over ... Let the selection w (X) c: (Uo(X) be

,oiven so that (2.1) is well defined for all to 1 0 . We assume that x-* vo(X)
0*

is continuous n , with modulus of continuity s -, K (s) over a compactK

K H I.Hre .K (.) maps 1R+  + is non-decreasing and K(0) = 0 . Our

task is to prove the following theorem.

lhlorem 5.1: Let K be a compact of S' There exists a non-decreasing,

continuous function s K (S) : IR + R + K (0) = 0 such that

Iv(x t ) - v(x2, t2 l < K(ix 1  - x + Iti  - t 2 )

for all (xi Iti) K'\ O,t] , i = 1,2 , and every compact K' C K

the funct ion ,K(.) depends only upon the data and the modulus of contin-

nity ,

&;ear\ we haive onlv to prove the continuity at t = 0 , so that it will

(I i ut' to ' ,iuC;ideLr c\'linders (BC)

le t ind, i R - 0 so small that B(R)c " Fix 0 , to

-Old ' r ti! c(- in,,er ( ()) consider the cut off function x -  7(x sOlccte

S k i (t here cxist s a conStant depending only upon the data such that t he

ttnc iou-; (. t +(v-kY{x,t sati sfv the ilequlitie-

(v - 1(1 ,R -, )(t) + [ x(v - k)! 2, - 'R - O t

N2
!,(v- k)) 2 21(R- R)' O,tl

2 -2 *'-l + kV, - , 2 ,2(tRt(0 4 .- R -  + (" ,N, (v - k)- .",OR,> T V

i
I

-



+ y meas AR (IY dT}

+ (Pb(k,O,t) ,for all t 0,t 0

provided that k E IR satisfies the restriction

(5.2) ess sup (v - k) < 6

R ~T

Here is the same number introduced in (2.6) and

2
't _r 2 - l+

(k,0,t) =+ v (x,tr X,!v 0': (2 v -k) C, dx

t+

)(x,T)Xjv O. (v k) 2 (xdxd-i

0

Inequalities (5.1) are derived in away similar to inequalities (2.7) (2.8)

the only difference being the domain of integration. In particular, the consta3it

ecan be taken equal to the analogous constant appearin in (2.7) - (2.8).

Next we simplify (5.1) by imposing furthier restrictions on the levcli h

setting

1k I(R) =sup v (x) k 2 (R) -if v 0B(R) '

for thie oscilIlat ion of x v v(x) in b(R) we h1ave

OS, V (x ) k ( 0 k t ( v -(

-57-



for a co1)act K . n - in (ind Ct':;Laining B(R) . ro' now on vc- will

keep fixed tlhe coc-act K , and tll the c i'-equcnL ar z!:"t" wi -e ri-.

ever balls B(R) c K
+

If in (5.1) we choose k > k (R) , then (v - k) (x,) = 0 . :or turer

if we look at v as extended over all QR in a way not to e.ceed kl(R)

then (v - k) +  is identically zaro over that portion of 0 not containud in

T * Therefore if k > k.I (R) , the domains of integration in (5.1) can be re-

2
placed by B(R - IlR) x [t0 - R2't3 on the left hand side and QR on the

right hand side re,-pectivelv. These remarks show that the function

(x,t) v(x,t) satisfies the inequalities

2

(5.1) (v - k)± rl0(B(R to  p2
S - l R ) x -t

1  
, to 

<- ( C R) -+ ( 2 2) 
I 1 (v _ k) +  2!

2 2,Q

t0_R

. r+ 2t0_R2

rr r
I + q

+ Tmieas kP.0 dT

+ sup cb (k,t 0-R, t)

tc it 0 -B ,t0 1

for all k > k (R) and sitisfying (5.2).

SA simiar argurxnt 1.olds for (x,t) -* (v - k) (x,t) provided that k _ k (R)

It yields inequlities t' wThich we will refer to as (5.1)

We denote .iti, ; i:e ,'I 't nit iral nu7"re-r sat i,- , ,,

r 2V

(5.3)



iet e any rositive nu=!her and construct the (BC)

0_ I < R) R 2,t B(
R 0 (1 0 0

00

n1

2 ~2 ' +

T

0

V 2 Ko

T

-,rjof at ~n .2 f l, flc ,: v c t-zc inc~lait i I~cn-l o f itherlm ai

1<+

rC



! , T

T P

lnd,-ed if both (5.5) and (5.5) are violated th(n12

C(F. " k ( ) - k( )- !-

s s+l s+1

contradicting (5.4).

Suppose that (5.5) holds true and observe that

meas I(x, t) 2 (x, t) k
22

2 1

N+2 K N+2

meas kc 1
0

Consider inequalities (5.1) for (v - k) ; k _ + s+2 and apply lemma

3.1. It gives the following alternative. Either

N

(i) I ess sup (v-( +----)) P.IS+20

L)r 0
00

l ~~~(ii) meas fl , }):
M42 2

If (W) occu.rn thO,n

el inf v- -

.



If (ii) is valid then

ess inf v > +
2s+2 2 s+2

R CT

2

= - +
2s+3

Hence in either case

osc V < L.)

2s+3
Q O 0 T

2

The lemma is proved.

Lemma 5.3: Let x.0 int K r and R so small that B( 0 0 K. There

exists a pair of sequences {Rn } \ 0, {'I } \ 0 such thatn n

osc v .- M n ,
- n •o

M
n

QR T
n

The sequences {R n} and {n depend only upon the data and the modulus

of continuity K(.) of x v 0O (x) in K.

Proof of lemma 5.3: For R R define

max{2. 2 S , _
,1

and --elect 1  so small that

(?i+3) 2\ +3

r

-61-*1



Then construct inductively the sequences R and a--
n'

22

R~ nl 2si 3  ; - 3 K
2 2

Rn+ =mrin 1  -a_-__ -

It is immediate to verify that {i'i } \ 0 and {R n\ 0. By virtue ofn n

Lemma 2.5, the conclusion of Lemma 5.3 holds true for n = i. SuPllose it

holds for n and let us show that it holds for n + 1. By assumption

RNi/2 .n
osc v < M and < n Hence by Lemma 5.2

n n 2s+3
n

QR~ "T :

n

0sc v <

n

2

To conclude the proof observe that

QR n+1  T QR L Tn-U n

2

Proof of Theorem 5.1: It is an inmediate consequence of Lemma 5.3.

Corollary: Let ."7 be an open set contained in .' and assume thatI
X -" v (x) is cuntinuou:; on -,' with modulus of continuity () uniform on

every compact K then v is continuous on K [C0,T] and

V]

v(xl'tl) - v(x 't2) K l- x2 4 t - t )
2 K 2



V(x It. ',T] 2 o "ti~.i~ ~n e o
1 1

K ( K 01 1'1Kd OlI '11OI 0 L~ 11

[B]- The case of variational 1b01ur1darv dlata.

Conisider forml 1% Ol te po

(v) - div a(x,t,v,'.' v) + b)(x,t,v,V, v)
x x

(5.6) a (x,tv, v)% (x,t) g(x,t,v) Onl S"

V(xC) V V 0 (x) I v 0x W 0 a.e. in I

where n S (n In , .,n )denotes the outer unit normal to S T' We
T l 2 n

assume that a(x,t,v,p) and b-(x,t,v,p,) satisfY- [T. [A,)] and that

V 0 L,(.'). On the boundary data g(x,t,v) we assume that

2] g is continuous over S \ 1r andi adi its an e11 t OlS io0nT (x ,t , v) ove r
T

such that

for some positive constant C.

Essentially we are imposing on g a growth at most linear with respect

to v.

By a weak solution of (5.6) we mean a function v W (1 ) satisfying
2 T

,t t
(3.7) - C,- v CI~x + (x, 1) [V 0 dxdt +

t) to



.... • (x, , vl "ci': , ', v)- . x

.. . . . . . .. . ...... ..

-. cv <: - t *.-..- .- 1 2 -'' , I ' . -- I ct a.. .. :iu lc-

I: !.. . ;. ''> .. I " -'..', ::,.t Li; co:tln-;th... ,-.. . .; b,

3w.-A :" . : ',,', 1,',. 7~ 1> Q<2L1, t W. i f l o ,i , t.. .- . ... . .,

U]. , -, : - .. . : ;", t [ .t[: , < :u r: < 
, ..  

: ; , S L ] ., at.. . "

} !.. , ..: ! .t . , -., ' <- .. -', : ' .,t; :C ,. '- ( ]. t .

-',1

'V

7.: . ,"' :: ,. X ,

'I
4" < : ', ] , i '



"oreover if v is continuous over all 2, then there exists

+ +
3 .(s) : P- IR , (0) = 0 continuous and non decreasing such that

1
,2

v(xl1tI) - v(x2 t x 2
22 - 0 1l 21 tl 2'

for all (xi,t i ) c T i= ,2.

The functions w (.) can be determined in dependence of the data and

the positive number J, and 0 (') can be determined only in terms of the

data and the modulus of continuity of v0.

The proof of the theorem is essentially the same as the proof of interior

regularity and is based on the same arguments of sections 3.4. The difference

is that instead of working on cylinders Q here we are dealing with

cylindrical domains of the type

B(R) [0 - R  't 0

We bound ourselves to describe the differences occurring in the proof.

1:ix x 0  3: and consider thc portion of the boundary given by

S 0 3 jx - x0 1 < R , R , 0 given

Our arguments being local in nature, we may assume without loss of

generality that S lies on the hyperplane x. = 0. Indeed this can always
0

be achieved by a local change of coordinates in identity (5.7) written for

example for test functions :(.,t) supported in a neighborhood of x0, for

t INT]

[B]I* Inequalities analogous to (2.7)

I[ft (x ,t ) T; , t NO 111 a d -,L'
1T



X X,

2

t , t) 1-'* t

sitce aroun d x is a portion of the hyperplan , x C and F ,

hal f ball '- x P,'x 0 and is the hal f cvlindcr

obtaLned by, intersecting the lateral cylinder (LC) fl with . oreover

noLice that since i t 0 , C F does not intersect at t = .

xur next task is to derive inequalities analogous to (2.7) over the domaivw;

xnn

2
CN 1 ' l 2 iN 0 0

S1,02 (0,1)

fThis is done by selecting in (5.7) test functions ; = c(v - - . where

(x,tt) - (x,t) is chosen as in (a).

All the terms on the left halid side of (5.7) are treated as in the

d,.rivaticn of (2.7) except for the different domain of integration. We remark

in th.is connection that ;(x ,t) vanishes on the parabolic boundary of

and n_t .sn th, parabolic boundary of C

e ,timate the term involving an integration over 2 on the right hand

.:iew i (5.7) ,v transforming it in a volume integral as follows

t

q2 f g(x, ,v)(v ) " d d
t

~t

-- r 2 q(x, V) (v k
-(

,i I~C , T v - )- " x,') dxd,



We expand the integrand, use hypothesis [G] and perform routine

-1 2 b2
calculations involving the Cauchy inequality ab < c a + b, E > 0, to

obtain the estimate

F f (v - I dxd, +
cx

C

R

+ y(c) f f \[(v k)+ 1 2r2 (x,)dxdT

C

- -f f 7 C0-] (x,)dxd

R

xc
R

where E 0 is arbitrary and y1 , y2  are constants depending upon the data

and c.

These remarks prove that there exists constants y and 6 such that for

all k - ]R satisfying

(5.8) ess sup (v - k) < 6
Cf-K

we have the inequalities

(2 - ) -2 -1 + 2
( 5 . 9( 4 <)v ( v -k ) - +

VI' (C (i -- 2,C

St r s'-(1',

t(I
[M ! (, L R2

.:,c (,t -_ Pre a 1 A I( - *1 4 ,. p2 i- k t -  t

• ~ C, F, G 'T'*t'
"

"f d f. r', ,. in f i t,.-;l.1t ,r.-r. :I 1iLIt I ( .F ) . fr all k sat i:fying

"( . 3) lr I 1 ' "' C , ")

'i -, 7-



;~vkthat thei, constants ri in (5.9) might differ from the(

anil'ooom: constants in (2.7) . This is due of course to the extra term involvedi

boniiaryintegrual.

2'11, .1 remnains unchanged and Lemma 2.2 now Lis stated as follow's.

. t , Ress Sul) (v - k) and T, 0 such that

\[t -)R',t
R 0 0

t)-0(v-))n+ +

thnthiere exist. a constant C depending only upon the data such that for all

(x,t)dx _ ( x,t - R)dx +
0

Ne,

C2- (I + j Tn-) 1 + -1- 2 mas

A-, re~miiKe.i after Lemma 2.2, also in the present situation an analogous

te.Il? :'L:;f~r (v - k 0 .K

. PrceedCingk in the' proof we -see that Lemma 3.1 holds in the present

Iml't ion for: the domainl C 1 ino-tead of for the cylinder .The only

* i ira onr~gvdothe proof of the recursion inequalities [] - [11]

""t 11!ed, the, embeddj~ing inequality (2 .11) valid for functions of

In mu car (v- k )- (x,)do not vani,,rh on tho lateral Ibonndi,-r:.

* K Fi\wemunrt uei nequalitv- (2 .12) ,and observeo that for the

. t - , one canl conI; ide r the cons~t alt in(2)a



Finally the last modification occurs in Lemma 3.4 in the use of DeTiorails

ineouality (2.9). Now such an inequality holds also for convex domain,

thercfore (2.9) i,; valid with B(R) replaced by 2 R" The remainder of the

croof stays unchanged. The first assertion of the theorem is proved. For the

second part we consider domain CR with tO - R. < 0 and over them carry on

the arguments of Lemma 5.2 - 5.3 with the modifications indicated above.

[C] The case of homogeneous Dirichliet boundary data.

We let v C W1 1 (P ) be a weak solution of (1.6) which in addition
2 T

satisfies

v = 0 (x,t) ST
sT

in the sense of the traces over ST . In this paragraph we investicate under

what ansum- tiens on 4. the interior continuity of v can be extended uT to

the lateral bou:ndary S of C . On assume the following:
*T T

-) :] 0, R0 > 0 such that Vx 32 and every ball

B(R) centered at X0, R R

meas[n : i [ (R)] < (1 - )mcas B(F)

Tl,.orem 5.3: Let v, W,1 ) be a weak solution of (1.6) such t-at

v an v in the sense' of the trae. T'-ere o
'°T T

0 < T < 1 and a conit ant r, such that

Iv(x,t) - T,( ist (x,t), ]

< '<, ,<v r if v'(x,fl) v (x) in the ovc f th , t ,i ' s >• 0

" C , ' . -i C, t h, n t . 1 . . a 11'lT i uieiu- 11ou1 ,., " u " t
LT

-1 -



Ii, 2) =C such thlat:

v (X,t V - (x ,t L iX, X + t1 -~

2i 2

W:>I 1-ki IS c an be 6.ctor:7rjncd in aco~~ncof the t~a and the'in ~ 2

ce~nt inuitv' of v in
0

The t hc rem i a conounce of thec following inequal itieos val i n2 v,( r

P,)) + o.(

2 R~ 1 2

C r

K,2 d: 2 0kt-R r
tt E t -R ,t0

0

or 31 k -.nc'! t .at

(5.11) ~ess sup (v k)<5

r.T

U. ..- :< e :mbe)-r intro~i,,ctd in (2 .6) and is the nm

r~rn-- in (2.7) . Th-e decfinit~cn of ' kt - , t) is clbviounz

......................tic-- (5.1c) 1-11-, e rived £ ron, i de t it;' (2.1) ue.the Choice of

(V 'Q K< h iC feU-tec as in (a).

:;ce - 1 1 + --- ~35 ( ~
T

.t i f2 .. in: w .0.: I I (2o a rip \1n

.. ..'~v' > V10) ': v - ) ;s~rthat



that 1art of Q that remains outside T' the domains of inteyration in

(5.10) can be rerlaced by R(JI,c 2 ) and R respectively. Hence for
+

(v - k) , k 0 we are led to the inequalities

2 2
(5.10) +  !(v k) 1,0 < R ) -  2 llCR - k) +

) (<R(cI,"2) 2,QR

to + ]r -(1+K)

+ Y -{ [meas Ak (R d T

valid for all c1 C2 L (0,1), and all k > 0 satisfying (5.11).

The same argument applied to (v - k) , k < 0 leads to inequalities for

(v - k) , k < 0 to which we will refer as (5.10) We remark explicitly that

+
in (5.10) [(5.10 rcap.] there is no restriction on the levels k other than

k > 0 (k < C r-p.) and satisfying (5.11).

Let (x 0't) ST t0 >0 be fixed and let R0  be so small that (2R 0<t
0t

so that Qj 0 <  2k. arc lateral cy'linders (LC) , with common "veitex"

(xopt 0 Set

e+: .upv , ess inf v , u=ess osc V

n TQ R T Q2 T}- 0 T 0 T

and, ;,:t.'at 1, of ,ra1jt' sujj1ose that

4

y"t I he mal.] t 1o! itive intcger such that

I ,-7 1 -

• I



r

+ +
ad A:rvc that - 0 e will employ (5.10) for the levels2s

s, p 1, over the cylinders QR R < .

> 0 there exists a positive integer p (depending

: l) sch that either

N

<i) <R , or
0

+ N+2

i) r"eas{(x,t) QR Iv(xt) - - } K e K R
02 p  1N 0

"Toe number P depends upon the data and 6 1 and it is independent of

and R

YProof of Lc.a 5 .5: 'he lemma is proved in exactly the same way as Lemma 2.4.

We rcmark that the e.stimate

+ * N
meas{B(K )\A + (t)} > 6 KN R0

2

_ 2or all t [to - ,t0], which in Lemma 3.4 was derived from De Giorgi's

n(:ualitv, in th,e prcsent situation is automatic since ' satisfies (P)

_5.: There exists a number I  0 such that if

m.as{ (x,t) v > 11 < KNR

IHjna xt 0 2~ -1 NO0

NK

+ +",) ,ur (v<- (. -R)) <
.0

I
-

ii , . ... ii , .. ... .i I1 II-7 2 -



or

+ 1

(ii) meas{(x,t) E v ~x,t) 2HI 0

2

The number 6i depends only upon the data and not upon w or R0 ,

Proof of Lemma 5.6: The proof is the same as for Lemma 3.1. In this case it

+ 2
is in fact simpler because the term a (k,t0 - R ,t) =0 It is this lasta ~00

fact also that makes e1  independent of w.

As a consequence of Lemmas 5.5 - 5.6 we observe the following result

Lemma 5.7: Consider the decreasing sequence of numbers and the family

of coaxial nested cylinders Q 0 with common "vertex" (x 0,t0.

2n

Tiere exits a positive integer q t 1N such that either

N

osc v2 q R)2

R 
( 2

0
,n+2

or

osc v <( - osc v

F, T 2q R T
0 0

-n+2 2n

The first assertion of the theorem follows from lcmma 5.7. fact t:

we have an estimate of fiUo1cr type n(\ar ST S a n.uence of 1,mnna 5.7

iliovci and lemma 5.8 of [E] :agie 96-97.

The second part of the t!ccrem is proved ' !st mat i:s the oscillation

. in latral cvy int](rs 2 with t - C,,

in irt [B]. We ),Iit th( , Ia!-.4 -, ... ..



c r.ark: 7 i (x,tz) 0 on ' S where S is an o'on set in the relative

toFology ot S_,,, then the continuity can be extended up to any comj act

S;, compact in the relative topology of ST .

E. Uniform apFr oximations:

A co"mm on device in the theory of existence of weak solutions of (1.1)

sutject to some initial data and to variational or Dirichlet boundary condi-

tions, consists in solving a sequence of regularized versions of (1.1) to

obtain the solution as a limit in a suitable sense of a sequence of solutions

of regularized problems. It is of interest in the applications to construct

the solution as a limit in the topology of the uniform convergence on com'-acts

of '." One such application can he found in (7]. In this section we indicate

how this ca- be realized.
10 (rT 0 !, 1

Iet v 2 LT) satisfy idfntity (1.5) for all W 2  C7 T) such that

t (x,t) h;as compact support in [0,T). Suppose that there exists securncs

161 and [v - (w ) }  such that

no n 2n

!1,1

v songly in L. T) and wakly in V'( )
2 T 2 T

,. w w~aklv in -T), W (v)

~~~I (X, 1_ v : , (x,t %-Vn , x n
x r n x n

(X , b(x,t,v,7 v) ,.'cakly in 12 (77)[I ' ' x T'

W . V ,' j -f. 'he idntityT r

,t t

4 11 x,.



01,1
for all ; W ( T) and all intervals [t ,t ] c (0,T].

2 T 0

Since w t (v ) in the sense of the graph, (6.2) is the weak formula-
n n

tion of

(6.3) 6(v-- v ) - div a(x,t,vn,VxV) - A(V +
?t-n n' x n n n

+ b(x,t,v n ,Vv ) 0 in 11 W T)

-1
FCmark: Because of the regularizing term -n A$(v ), the functionsn

(x,t) - w (x,t) t 8(v ) and (x,t) I v (x,t) are Holder continuous over T
n n n T

with exponent depending upon the data and n , (see (181).

Regular i zat ions like (6.3) are of the type of Hopf vanishing viscosity,

And were used in [2).

irtrsore we assume that the weak solution v of (6.3) can be obtainedn

as a '.:k.ak w,' ( )-limit of weak solutions of

(6.4) -- (V) - div a(x,t,vm , v) +
tm n n' xn n n

vm
+ b(x,t,v ,V vm) = 0 in )(T

n x n T

where { (.)) is a sequence of continuously differentiable regularizations of

the cjraph -(') such that

0 - - O (s) V
pin

'(s) < 1 si' m

(m)  m
:are %~ t vat. (T) I .riformly in m and that

m n T

(i) v - v :I -rwjly in T (T) , w, akly in W (T

((ii) w ) , (Vn) u~cfv i I. . ,: '. k ly in W1 ' 1 (
r, n 1, n 2 P2 T

}i-7 ')-



m r .. m.m

(iii) a.(xtvm v vm  ' b(x't'v m'V v) -*
I nl Xfn n x n

a,(x,t,v ,7 v ) , b(x,t,v ,V v ) weakly in L2 (2TI n x n n' x n2T

This second approximation is introduced only for technical reasons in

orcler to Pistify the calculations below.

Theorem 6.1. Assume that aM < - such that

liv c IN 11

Then the sequence {v n} is equicontinuous in T"

If Vn 1N v n(x,O) = v 0(x) C() in the sense of the traces over .,

then v n} is equicontinuous in T U N(0).

If Vn c 1 vn ST = 0 and Vn (xO) = v 0(x) E C() then {vn is equi-

continuous in 0

Finally assume that

(i) v (x,0) = v (x) & C(Q) Vn E 2Nn 0

(ii) ja(x't'vnVxvn) -V V Vn} n = g(x,t,v
n x n n x n S TnST

in the sense made precise in (5.7)

1 "-

(iii >7 is a C" manifold in DR

(iv) g satisfies assumptions [G] of Theorem 5.1

Then the sequence rv } is equicontinuous in 2
n T

Proof of Theorem 6.1: In section 4 we remarked that the modulus of continuity

of v in is determined uniquely in dependence of M and the various

constants appearing in (2.7) and Lemma 2.2. In view of this, to prove the

r
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i+
theorem will be enough to show that the functions (v - k)! satisfy inequaiiticei

n

like (2.7) and Lemma 2.2, with constants independent of n.

Let (x 0,t 0 ) r-T and R so small that Q c 2 T . Let ol' 2

construct the cylinder QR (Oi,2) and smooth cutoff functions (x,t) - (x,t)

such that

(i) (x,t) _ 1 (x,t) C QR(Ol, 2) supp - ! R

C -2 C -1

2 1

(iii) I" C -
CT -22-- 2
0 1

It is easily checked that Lemma 2.2 carries over to the present situation

with constants independent of n. We start from (6.2) choose a cutoff function

x , -(x) independent of t, and reproduce the same estimates in the proof of

[remna .

Next observe that by selecting r. - k)+ 2
+ + .

inequalities (2.7) for (v - k)+ with 'a(k,t - P"t) : 0 Th cllculaticns
n a0

show that the constants - and are independent of n (although they might

differ from the analogous constants in (2.7)). The argument remains valid for

0.- k) k. 0. Hence we have to prove inequalities like (2.7) forn
+

(v -k l . k 0 and (v -k), k -c.
n n

,.'or this write (6.4) in the weak form for test functions = -

The term

t
0

f {a(xtv m xvm)V f(.m - -" -

-'n x n x n
t -F

- h(x,t,vmn, v) (v -n-

-'I

*1I

|4



can be treated in exactly the same way as in the derivation of (2.7) T!. :e

let m (the lowcr semicontinuitv of ' 1 in L., ( T ) is emloved) a:d
x n

observe that the constants involved are independent of n.

Next we estimate the two remaining terms

t
O0

I ('7')'(v
m - IkY] -(x,t~dxJ

m n

t

1 .It - - r" *; (vp! ['v - .)= ,(,T)]JxJ:

-- n ' x m n x 11

For I w<- have (we drop the subscripts m and n for simplicity of notation).

+ ," ]',v (V k) (x,-)dxdL =

i- k-1 • (x,T)dxdT

where

s
(S) / (k * ) d,

0

It follows that

++
ti  _ (v -.. -.( k ) )2]
((r -.)- ,-;( ,t)--- --- y f f.',[ -(, - k ) l xd?

- F-

T ,e irti ral i- estimated as follows:

7P-



n " f f (v)7 (v - k) + 2 dxdT
x x

f f B(v) (v k)- k dxd
R

From this, standard calculations and limiting processes it follows that there

exist constants y, 6 independent of n such that

(7. 1) (v - k)-2 < [(j R)-2 + (02R 2 ) 1 (vn - k )+ 2 +
n X l1C> 0 1 2 n 2,Qk

2 R (1'2)) 2R

( to + ~r r- (i+<) + _R
- r -+0

+ - [meas A dT + , (k, to0 fto
It k-pR0

provided that ess sup (v - k)+

+

Here (-,-,.) can be majorized by

- const + _
(7.2) _ 2 {(V - k)- + ,[(v - k)- >O)}dxd

++

Moreover vanishes if (7.1) are written for (v - k) k o, orn

(v -k, k <0*n + +

Tht- term is slightly different from the - in (2.7). The only parta

of the proof of Theorem 1 where (2.7) has been employed with ¢- / 0 is
± a

1 emma 3.1. In such a lemma we estimated as
a

:'kt- P",t) -~ F j( k + dd
a rTh - 7K -, fC -d

-79-~
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By following the various steps in the proof of Lemma 3.1 it is easily

checked that the extra term

2 f f :[(v - k)± 101dxdt

min[(,l Illy QR n

in (7.2) does not affect the result. A few minor changes are necessary which

aro left to the reader.

For the continuity up to the boundary the same arguments of section 6 are

valid in the present situation. The proof is complete.

|"
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